Volterra Composition Operators between Weighted Bergman-nevanlinna and Bloch-type Spaces
نویسنده
چکیده
Let g and φ be holomorphic maps on D such that φ(D) ⊂ D. Define Volterra composition operators Jg,φ and Ig,φ induced by g and φ as Jg,φf(z) = Z z 0 (f ◦ φ) (ζ) (g ◦ φ)′ (ζ) dζ and Ig,φf(z) = Z z 0 (f ◦ φ)′ (ζ) (g ◦ φ) (ζ) dζ for z ∈ D and f ∈ H(D), the space of holomorphic functions on D. In this paper, we characterize boundedness and compactness of these operators acting between weighted Bergman-Nevanlinna spaces AβN and Bloch-type spaces. In fact, we prove that Jg,φ : AβN → B α ( or Bα 0 ) and Ig,φ : A β N → B α (or Bα 0 ) are compact if and only if they are bounded.
منابع مشابه
Weighted composition operators on weighted Bergman spaces and weighted Bloch spaces
In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.
متن کاملProducts of multiplication, composition and differentiation between weighted Bergman-Nevanlinna and Bloch-type spaces
Let φ and ψ be holomorphic maps on such that φ( ) ⊂ . Let Cφ,Mψ and D be the composition, multiplication and differentiation operators, respectively. In this paper, we consider linear operators induced by products of these operators from Bergman-Nevanlinna spaces AβN to Bloch-type spaces. In fact, we prove that these operators map AβN compactly into Bloch-type spaces if and only if they map A β...
متن کاملEssential norm of generalized composition operators from weighted Dirichlet or Bloch type spaces to Q_K type spaces
In this paper we obtain lower and upper estimates for the essential norms of generalized composition operators from weighted Dirichlet spaces or Bloch type spaces to $Q_K$ type spaces.
متن کاملGeneralized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces
Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...
متن کاملEssential norm estimates of generalized weighted composition operators into weighted type spaces
Weighted composition operators appear in the study of dynamical systems and also in characterizing isometries of some classes of Banach spaces. One of the most important generalizations of weighted composition operators, are generalized weighted composition operators which in special cases of their inducing functions give different types of well-known operators like: weighted composition operat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008